
IRREDUCIBILITY CRITERION FOR STANDARD MODULES: EXAMPLES
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These notes are written for a talk at the Representation Theory Seminar at the University ofMelbourne
inMay, 2022. This talk is a follow up to previous two talks. The notes for the previous talks can be found
here.
Warning: in the previous talks (especially in examples), labelled roots (α,β, γ, etc.) are usually roots

on Cartan subalgebras. In this talk, the labelled roots are all roots on the universal Cartan algebra.
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In this talk, I will rephrase the irreducibility criterion in algebraic terms (i.e. without exponentials),
demonstrate the proof of the irreducibility criterion explicitly on concrete examples (SU(2,1), SL(3,R) and
SL(2,R)), and answer some questions raised in previous talks along the way.

Recall that we are fixing a complex semisimple Lie algebra g, an involution θ on gwith fixed point k, a
semisimple complex algebraic group G with Lie algebra g and a reductive subgroup K with Lie algebra
k. h denotes the universal Cartan algebra of g, and λ P h˚ is fixed. We consider irreducibility of standard
ModcohDX,λ, K)‑modules I(Q, τ) := jQ˚τ where jQ : Q → X is the immersion and τ is an irreducible
K‑equivariant connection on Q.

1. THE CRITERION REPHRASED

It was requested to rephrase the parity condition in algebraic group terms without exponentials.
Write H for the universal Cartan group of G, Φ Ą Φ− its root system and the set of negative roots. We

will often pass between (co)roots/weights ofH and h freely without changing notations. Recall that each
K‑orbit Q on X determines an involution θQ on H by choosing a point x P Q, choosing a θ‑stable Cartan
subgroup C Ă Bx, and pulling back θ on C along the restriciton map (−)|x : H – Bx{Nx – C. The
involution θQ determines different types of roots, the collections of which are denoted by

ΦQ,R, ΦQ,C, ΦQ,NI, ΦQ,CI. (1.1)
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Let x P Q. For each α P ΦQ,R, we have the following commutative diagram

{−1} Gm

HθQ H

Gm K X Bx T C

α∨ α∨

(−)|x (−)|x

τ(x)

(1.2)

where the dotted arrow is the composition. The image of −1 along the dotted arrow is denoted bymα|x,
i.e.

mα|x := α∨(−1)|x. (1.3)

Hence τ(x)(mα|x) = τ(x)(α∨(−1)|x) P {˘1}.
There is a subset of complex roots

D−(Q) =
{
α P Φ−

Q,C | −θQα P Φ−
Q,C

}
. (1.4)

On Zuckerman orbits this set is empty.

Parity Condition 1.5. Let I(Q, τ) be a standard module. Let α P ΦQ,R and x P Q. Let A be a set of rep‑
resentatives of (−θQ)‑orbits in D−(Q). We say that τ satisfies the SL2‑parity condition with respect to α

if

(−1)xα∨, λ+ρ+
ř

βPA βy
‰ −τ(x)

(
mα|x

)
. (1.6)

This does not depend on the choice of A. The pairing on the left side is computed on the Lie algebra level.

Irreducibility Criterion 1.7. Let I(Q, τ) be a standard module. Then I(Q, τ) is irreducible if and only if both
of the following conditions are satisfied:

‚ D−(Q) X Φλ = ∅, and
‚ τ satisfies SL2‑parity condition with respect to all roots in Φ−

Q,R.

The plan for today is to run the proof on small examples very explicitly. Hopefully this will help
people understand what is going on.

2. EXAMPLE: SU(2, 1)

Recall that there are six orbits attached to two classes of Cartans:

O
cm.sp

Q+ Q−

C+ C0 C− ccpt

(2.1)

2.1. Types of roots determined by different orbits. In one of the previous talks there was some confu‑
sion on how different types of roots are determined on the universal Cartan. Let us answer that here by
making everything precise.
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The universal Cartan algebra h has the following root system where the negative roots are labelled by
α,β, γ:

Φ :

α γ

β . (2.2)

The roots α,β, γ do note depend on any point on X or on any orbit.
Let

cm.sp =


a b

−2a

b a

 | a, b P C

 (2.3)

be a maximally split Cartan subalgebra. Then its root system is

Φ(g, cm.sp) :

C C

R R

C C

. (2.4)

These types of roots are determined by θ and does not depend on any orbit.
Now consider the orbit Q+. If we take the Borel bx+ Ą cm.sp by taking the roots from 11 to 3 o’clock,

the corresponding point x+ lies inQ+. Therefore we have a restrictionmap (−)|x+ : h˚ → c˚
m.sp that sends

(−)|x+ : Φ− Þ→
α|x+ ,C γ|x+ ,C

β|x+ ,R (2.5)

Pulling back to h˚, we see that α, γ P Φ−
Q+,C and β P Φ−

Q+,R. Hence the picture on Φ determined by Q+

is

(Φ,θQ+) :

α,C γ,C

R β,R

C C

(2.6)

Now consider the orbit O. Let bxO Ě cm.sp be formed by taking the roots from 1 to 5 o’clock. Then
xO P O. Since bx+ and bxO are in relative position sα, (−)|xO = (sα−)|x+ . So the restriction map (−)|xO :
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h˚ → c˚
m.sp sends

(−)|xO : Φ− Þ→
β|xO ,C

γ|xO ,R

α|xO ,C

. (2.7)

Pulling back to h˚, we see that

(Φ,θO) :

α,C γ,R

C β,C

R C

(2.8)

For Q−, we can form bx− Ą cm.sp by taking roots from 3 to 7 o’clock. Then

(−)|x− : Φ− Þ→ α|x− ,R

β|x− ,C γ|x− ,C

. (2.9)

Hence Pulling back to h˚, we see that

(Φ,θQ−) :

α,R γ,C

C β,C

C R

(2.10)

Putting these together, we get the picture on c˚
m.sp from previous talks

Φ(g, cm.sp) :

C

Q+

O

C

R R

Q−

C C

(2.11)
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and the following three pictures on the universal Cartan h˚:

α,C γ,C

R β,R

C C

α,R γ,C

C β,C

C R

α,C γ,R

C β,C

R C

(Φ,θQ+) (Φ,θQ−) (Φ,θO)

(2.12)

Using the same argument on the compact Cartan

ccpt =


˚

˚

˚

 , (2.13)

we have the picture on c˚
cpt

Φ(g, ccpt) :

CI C−

C+

C0

NI

NI NI

NI CI

(2.14)

and the following pictures on h˚:

α,CI γ,NI

NI β,NI

NI CI

α,NI γ,CI

NI β,NI

CI NI

α,NI γ,NI

CI β,CI

NI NI

(Φ,θC+) (Φ,θC0
) (Φ,θC−)

(2.15)

2.2. Standard modules on Zuckerman orbits. Consider the standard module I(Q+, τ+) on Q+ (since
the K‑stabilizer of x+ P Q+ is connected, there is a unique connection τ+ on Q+ compatible with λ).
According to the proof, we should project to the partial flag variety corresponding to Q+‑real simple
roots. In our situation there is only one such root, namely β. So we want to project along πβ : X → Xsβ .

Question 2.16. What is the image of each orbit under πβ?

Given an orbit Q Ă X, the image πβ(Q) is a K‑orbit in Xsβ . The preimage Xπβ(Q) := π−1
β (πβ(Q)) is a

union of finitely many orbits.
By K‑equivariance, the orbit structure in Xπβ(Q) can be detected on a fiber: if y P πβ(Q), then the fiber

Xy is the flag variety of [py, py] with the action of Ky := im(K X Py → Py → (Py{ radPy){Z(Py{ radPy)).
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By K‑equivariance, the K‑orbit structure on Xπβ(Q) is the same as the Ky‑orbit structure on Xy.

Q 1 Q 1 X π−1
β (y)

X Xπβ(Q) Xy

Xβ πβ(Q) {y}

πβ

. (2.17)

Remark 2.18. In fact, as we have seen last time, descent gives a equivalence of categories

Modcoh(DXπβ(Q),λ, K) – Modcoh(DXy,λ, Ky). (2.19)

On the other hand, Xy – P1, and there are only three possibilities for K˝
y (identity component) if Ky

has finitely many orbits on Xy: K˝
y is isomorphic to either SL(2,C), or PSL(2,C), or covers of {( ˚ ˚

0 ˚ )} Ă

PSL(2,C), or
{(

1 ˚
0 1

)}
Ă PSL(2,C), or C˚. If you try to calculate K˝

y by its Lie algebra and determine
which case we are in, you will end up looking at the root β:

Lemma 2.20 ([Hec+, 6.5]). Suppose β P h˚ is a simple root and Q is a K‑orbit.

β K˝
y Q X Xy Ă P1 Q

Q‑CI SL(2,C) or PSL(2,C) Q X Xy = Xy Q = Xπβ(Q)

Q‑NI C˚ Q X Xy Ď {0,∞} Q is closed in Xπβ(Q)

Q‑R C˚ Q X Xy = C˚ Q is open in Xπβ(Q)

Q‑C and β P D−(Q) has 1‑dim’l unip. rad. Q X Xy = P1 − {0} Q is open in Xπβ(Q)

Q‑C and β R D−(Q) has 1‑dim’l unip. rad. Q X Xy = {0} Q is the closed orbit in Xπβ(Q)

Example 2.21 (Prototypical examples). The above table is proven based on the following sl2‑examples.
Let g = sl(2,C) and let ˘β be the roots.

β G0 (g, K) Q

Q‑CI SU(2) (sl(2,C),SL(2,C)) P1

Q‑NI SL(2,R) (sl(2,C),SO(2,C)) {0} or {∞}

Q‑R SL(2,R) (sl(2,C),SO(2,C)) C˚

Q‑C, β P D−(Q) “SL(2,C)” (sl(2,C), {( ˚ ˚
0 ˚ )}) P1 − {0}

Q‑C, β R D−(Q) “SL(2,C)” (sl(2,C), {( ˚ ˚
0 ˚ )}) {0}

Remark 2.22. A question raised last time was: why can we always find a P1‑slice in X transversal to a
closed subset S in X? This lemma answers the question when S is the closure of an orbit Q: we can take
a simple root β that is Q‑NI or Q‑C and β R D−(Q), and take the P1‑slice to be Xy.

Back to SU(2, 1). Take y = πβ(x+) P πβ(Q+). Then Q+ X Xy = C˚ is the open C˚‑orbit. So any other
orbit Q 1 in Xπβ(Q+) must be 1‑dimensional (hence must be a closed orbit), lies in Q+, and βmust be Q 1‑
NI. Looking back at (2.15),Q 1 could be either C+ or C0. If one of them is not in Xπβ(Q+), then there must
be another 2‑dimensional orbitQ2 and β isQ2‑R. But the only other 2‑dimensional orbit isQ− and β is
Q−‑C. Therefore both C+ and C0 are in Xπβ(Q+). The three orbits Q+ X Xy, C+ X Xy and C0 X Xy can be
identified with C˚, {0} and {∞} on P1.

Let’s look at other orbits. For C−, β is C−‑CI, so C− = Xπβ(C−) and πβ(C−) is a point. For Q−, β is
Q−‑C and β R D−(Q−) = ∅. So there is a P1‑slice (denoted by, say, P1

β) so that Q− X P1
β = {0}. For O, β

is O‑C and β P D−(O), so O X P1
β = P1 − {0}.
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Therefore we have the following picture, where orbits in the same circle are mapped onto the same
orbit:

O

Q+ Q−

C+ C0 C−

(2.23)

OYQ− is mapped to the 2‑dimensional open orbit in Xsβ ;Q+ YC+ YC0 are mapped to a 1‑dimensional
closed orbit; C− is mapped onto a point.

Let’s come back to irreducibility of I(Q+, τ+). First, Xπβ(Q) = Q+ Y C+ Y C0 is closed in X (because
πβ(Q) is closed in Xsβ). So by Kashiwara’s theorem there is an equivalence

Modcoh(DX,λ, K)Q+YC+YC0

modules supported in Q+YC+YC0

– Modcoh(DQ+YC+YC0,λ, K) (2.24)

and I(Q+, τ+) is irreducible iff. it is irreducible in the second category. Then, if y = πβ(x+) P πβ(Q+),
by descent 2.18, taking ˚‑pullback to Xy is an equivalence

Modcoh(DQ+YC+YC0,λ, K) – Modcoh(DXy,λ, Ky) – Modcoh(DP1,λ, Ky) (2.25)

By base change, I(Q+, τ+)|Xy is a standardmodule I(C˚, τ+|Q+XXy) onC˚. The representation τ+|Q+XXy(x+)
defining the connection is the restriction of τ+(x+) to the Ky‑stabilizer of x+ which is {1,mβ|x+}. We have
seen last time that I(C˚, τε) is irreducible if and only if

(−1)xβ∨, λ+ρy ‰ −τ+|Q+XXy(x+)(mβ|x+). (2.26)

This is the same as the parity condition for τ+. Therefore,
I(Q+, τ+) irreducible⇐⇒ I(Q+, τ+)|Xy = I(C˚, τε) is irreducible⇐⇒ τ+|Q+XXy satisfies parity condition for β⇐⇒ τ+ satisfie parity condition for β.

A similar argument works for Q−.

2.3. Standard module on the open orbit. Let’s consider a standard module I(O, τO) on O (again there
is a unique connection τO compatible with λ because of connectedness of K X BxO). In this case γ is the
only real root and D−(O) = {α,β}. Take A = {α}. The parity condition for τO reads

(−1)xγ∨, λ+ρ+αy ‰ −τO(xO)(mγ|xO). (2.27)

This is supposed to be a “translation” of the parity condition for a Zuckerman orbit (which can be taken
to be Q+). Let τ+ be the unique connection on Q+ compatible with sαλ.

Claim 2.28. The DX,λ‑module I(O, τO) satisfies the parity condition for γ ⇐⇒ the DX,sαλ‑module
I(Q+, τ+) satisfies the parity condition for β. In other words,

(−1)xγ∨, λ+ρ+αy ‰ −τO(xO)(mγ|xO) (2.29)⇐⇒ (−1)xβ∨, sαλ+ρy ‰ −τ+(x+)(mβ|x+). (2.30)
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What is the relationship between Q+ and O and between τ+ and τO? From (2.11) we see that bx+ and
bxO are in relative position α. So we have the following commutative diagram

O p−1
2 (Q+) Q+

X Zsα X

jO

– p2

jQ+

p1 p2

(2.31)

which was used to show
IsαI(Q+, τ+) = I(O, τO) (2.32)

where Zsα is the G‑orbit in X ˆ X labelled by sα. Inverting the isomorphism in the diagram, we get a
K‑equivariant submersion

O −−↠ Q+ (2.33)
corresponding to the inclusion

z

z−2

z

 = K X BxO ↪−−→ K X Bx+ =


z bz

z−2

z

 . (2.34)

The connection τO is the ˚‑pullback of τ+ along this submersion, and the representation τO(xO) is given
as the restriction of τ+(x+), i.e.

τO(xO) = τ+(x+)|KXBxO
. (2.35)

Bringing the definitions ofmβ|x+ andmγ|xO into our picture, we have a commutative diagram:

{−1} Gm

{−1} Gm

HθO H

HθQ+ H

Gm K X BxO Tm.sp Cm.sp

Gm K X Bx+ Tm.sp Cm.sp

γ∨ γ∨

β∨

sα
(−)|xO (−)|xO

sα

β∨

(−)|x+
τO(xO)

τ+(x+)

(−)|x+

. (2.36)

τO(xO)(mγ|xO) = τO(xO)(γ
∨(−1)|xO) is the image along the squiggly arrow, and τ+(x+)(mβ|x+) =

τ+(x+)(β
∨(−1)|x+) is the image of the dashed arrow. Therefore

τO(xO)(mγ|xO) = τ+(x+)(mβ|x+). (2.37)

Thus the claim reduces to
(−1)xγ∨, λ+ρ+αy = (−1)xβ∨, sαλ+ρy (2.38)

which can be verified easily.
Let’s come back to irreducibility of I(O, τO). The criterion involves an additional condition: D−(O)X

Φλ = ∅, which has to do with intertwining functor Isα .
Since IsαI(Q+, τ+) = I(O, τO), if Isα is an equivalence of categories, then
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I(O, τO) is irreducible⇐⇒ I(Q+, τ+) is irreducible⇐⇒ τ+ satisfies parity condition for β⇐⇒ τO satisfies parity condition for γ.
We know Isα is an equivalence of categories if and only if α R Φλ, i.e. α not integral. On the other hand,
the compatibility of τ+ and λ forces α + θOα = α − β to be integral. So α not integral iff. α,β both not
integral iff. D−(O) X Φλ = {α,β} X Φλ = ∅. We have shown:

“D−(O) X Φλ = ∅” + “τO satisfies parity condition for γ” =⇒ “I(O, τO) irreducible”.
What if D−(O) X Φλ ‰ ∅? Then α or β is integral[1]. Say β is integral. Then if we look at the P1‑slice

P1
β through O and Q−, the standard module I(P1

β − {0}, λ) = I(O, τO)|P1
β
is reducible (the submodule is

a line bundle on P1
β). By descent, I(O, τO)|OYQ− is reducible, and hence I(O, τO)must be reducible. We

have therefore shown:
“D−(O) X Φλ = ∅” + “τO satisfies parity condition for γ” ⇐⇒ “I(O, τO) irreducible”.

3. EXAMPLE: SL(3,R)

The only phenomenon not present in SU(2, 1) is a standard module on a large open orbit for a split
pair. So let’s look at th open orbit in SL(3,R). Recall that there are four orbits:

O csp

Q+ Q−

cm.cpt

Q0

, (3.1)

3.1. Types of roots determined by different orbits. Repeating what we did in §2.1, we obtain the fol‑
lowing pictures on h˚:

α,R γ,R

R β,R

R R

α,NI γ,C

C β,C

C NI

α,C γ,NI

C β,C

NI C

α,C γ,C

NI β,NI

C C

(Φ,θO) (Φ,θQ+) (Φ,θQ0
) (Φ,θQ−)

(3.2)

3.2. Standard modules on the open orbit. Consider the open orbit O. As we discussed last time, there
are four irreducible connections on O compatible with any λ. Let τ be one of them.

We first want to obtain a necessary condition for irreducibility of I(O, τ). So suppose I(O, τ) is irre‑
ducible. We want to show that τ satisfies parity condition for all (real) roots. The idea is to reduce to sl2
case by pulling back to P1‑slices.

Consider first the simple root α. We want to pullback to a P1
α‑slice through O. Since α is O‑real,

any other orbit Q meeting P1
α has α as a Q‑NI root. The only such orbit is Q+. So Xπα(O) = O Y Q+,

O X P1
α = C˚, and Q+ X P1

α = {0} Y {∞}[2]. Therefore

[1]In fact they are both integral because α − β is integral
[2]The intersection consists of two orbits because Ky is disconnected.



10 QIXIAN ZHAO

I(O, τ) is irreducible =⇒ I(O, τ)|OYQ+ is irreducible
(by descent) ⇐⇒ I(O, τ)|P1

α
is irreducible⇐⇒ τ|OXP1

α
satisfies parity condition for α⇐⇒ τ satisfies parity condition for α.

A similar argument works for the other simple real root β.
I(O, τ) is irreducible =⇒ τ satisfies parity condition for β.

It remains to look at the real non‑simple root γ. The idea is to apply sα so that sαγ = β becomes a
simple real root. On the module level, this amounts to applying the intertwining functor Isα .

Lemma 3.3. Suppose τ satisfies parity condition for a simple real root α.
(1) There exists a connection on O such that

IsαI(O, τ) = I(O, τsα). (3.4)
(2) τ satisfies parity condition for γ if and only if τsα satisfies parity condition for sαγ = β.
(3) If α∨(λ) P Z, then

I(O, τsα) = I(O, τ)(−α∨(λ)α). (3.5)

Assuming the lemma, we have two cases:
(a) α∨(λ) R Z. In this case Isα is an equivalence of categories, so

I(O, τ) irreducible ⇐⇒ I(O, τsα) irreducible
(since β is simple) =⇒ τsα satisfies parity condition for β = sαγ⇐⇒ τ satisfies parity condition for γ.

(b) α∨(λ) P Z. Since twisting is also an equivalence of categories, the previous argument goes
through.

Therefore, we have shown
I(O, τ) is irreducible =⇒ τ satisfies parity condition for all (real) roots.

Let’s consider the converse: suppose τ satisfies parity condition for all roots and I(O, τ) is reducible.
Then there is a proper quotient I(O, τ) ↠ Kwith irreducible support (so SuppK = Q for some orbitQ).
Then there are two cases:

(a) The good case is when SuppK has codimension 1. Then SuppK is the closure of eitherQ+ orQ−.
Say it’s Q+. Then restricting to the P1

α‑slice we found before produces a surjection
I(C˚, τ|OXP1

α
) = I(O, τ)|P1

α
−−↠ K|P1

α
‰ 0 (3.6)

where K|P1
α
is supported in {0,∞}. So τ|OXP1

α
and hence τ must fail the parity condition for α.

This is a contradiction.
(b) The bad case is when SuppK has codimension ą 1. So SuppK = Q0 and K can be taken to be

I(Q0, τ0). The idea is to reduce to the good case by enlarging I(Q0, τ0). We know how this can
be done: intertwining functor for complex reflections.

More specifically, we take the simple Q0‑complex root β. Then
IsβI(Q0, τ0) = I(Q+, τ+) (3.7)

for some τ+. So we obtain, by right‑exactness of H0Isβ , the surjections

H0IsβI(O, τ) H0IsβI(Q0, τ0)

I(O, τsβ) I(Q+, τ+)

. (3.8)

By case (a), τsβ must fail parity condition for α = sβγ. So τmust fail parity condition for γ, giving
a contradiction.

We have thus proved:
I(O, τ) is irreducible ⇐⇒ τ satisfies parity condition for β
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modulo the lemma.
As we have probably guessed, the lemma is proven by taking P1

α‑slice and reduce to explicit sl(2,C)‑
calculation. I’ll give you the general steps and leave the details to the audience as an exercise:

(a) Show that for a standard module on O, (IsαI)|P1
α
= I(I |P1

α
), where I is the intertwining functor

on P1.
(b) Show that Lemma(1) is true on P1.
(c) Show that (a)+(b) proves Lemma(1).
(d) Lemma(2) is proven in the same way as 2.28.
(e) Lemma(3) is proven by explicitly tracing through step (a).
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