A non-integral Kazhdan-Lusztig algorithm

Qixian Zhao

Yau Mathematical Sciences Center, Tsinghua University

Oct 14, 2023

Table of Contents

- The Kazhdan-Lusztig Conjecture
- 2 Solution of Kazhdan-Lusztig problem integral case
- Non-integral case
- 4 Comparison with existing methods

Table of Contents

- The Kazhdan-Lusztig Conjecture
- 2 Solution of Kazhdan-Lusztig problem integral case
- 3 Non-integral case
- 4 Comparison with existing methods

- lacksquare g semisimple Lie algebra over $\mathbb C$
- $\ \ \ \ \ \ \mathcal{C}$ a nice category of representations of $\mathfrak{g}.$

- lacksquare g semisimple Lie algebra over $\Bbb C$
- $\ \ \ \mathcal{C}$ a nice category of representations of $\mathfrak{g}.$ Examples:
 - $\mathcal{C} = \mathcal{O}'_{\lambda} = \mathsf{Mod}_{\mathit{fg}}(\mathfrak{g}, \mathit{N})_{\lambda}$ the Category \mathcal{O}' with infinitesimal character χ_{λ}

- lacksquare g semisimple Lie algebra over $\Bbb C$
- $\ \ \ \mathcal{C}$ a nice category of representations of $\mathfrak{g}.$ Examples:
 - $C = \mathcal{O}'_{\lambda} = \mathsf{Mod}_{fg}(\mathfrak{g}, N)_{\lambda}$ the Category \mathcal{O}' with infinitesimal character χ_{λ}
 - $C = \mathsf{Mod}_{fg}(\mathfrak{g}, N, f)_{\lambda}$ the category of Whittaker modules

- lacksquare g semisimple Lie algebra over $\mathbb C$
- $\ \ \ \mathcal{C}$ a nice category of representations of $\mathfrak{g}.$ Examples:
 - $C = \mathcal{O}'_{\lambda} = \mathsf{Mod}_{fg}(\mathfrak{g}, N)_{\lambda}$ the Category \mathcal{O}' with infinitesimal character χ_{λ}
 - $C = \mathsf{Mod}_{fg}(\mathfrak{g}, N, f)_{\lambda}$ the category of Whittaker modules
 - $C = \mathsf{Mod}_{fg}(\mathfrak{g}, K)_{\lambda}$ the category of (\mathfrak{g}, K) -modules (representations of real groups)

- lacksquare g semisimple Lie algebra over $\Bbb C$
- ${f C}$ a nice category of representations of ${rak g}$.

We will focuse on:

■ $C = \mathcal{O}'_{\lambda} = \mathsf{Mod}_{\mathit{fg}}(\mathfrak{g}, \mathit{N})_{\lambda}$ the Category \mathcal{O}' with infinitesimal character λ

The category ${\mathcal C}$ we are looking at has some nice properties:

The category ${\cal C}$ we are looking at has some nice properties:

■ Every object has finite length

The category C we are looking at has some nice properties:

- Every object has finite length
- There are finitely many irreducible objects L_w , parameterized by a set $w \in \Xi$

The category C we are looking at has some nice properties:

- Every object has finite length
- There are finitely many irreducible objects L_w , parameterized by a set $w \in \Xi$
- Each irreducible L_w is the unique irreducible submodule of a **standard object** I_w , which are much easier to understand.

$$\blacksquare \mathfrak{g} = \mathfrak{sl}(3,\mathbb{C})$$

- $\blacksquare \mathfrak{g} = \mathfrak{sl}(3,\mathbb{C})$
- ${\color{red} \blacksquare} \; \mathcal{C} = \mathsf{Mod}_{\mathit{fg}}(\mathfrak{g}, \mathit{N})_{\lambda}$

- $\blacksquare \mathfrak{g} = \mathfrak{sl}(3,\mathbb{C})$
- $\mathcal{C} = \mathsf{Mod}_{fg}(\mathfrak{g}, N)_{\lambda}$
- \blacksquare Ξ = W, the Weyl group of \mathfrak{g}

$$lacksquare$$
 $\mathfrak{g}=\mathfrak{sl}(3,\mathbb{C})$

$$lacksquare$$
 $\mathcal{C} = \mathsf{Mod}_{\mathit{fg}}(\mathfrak{g}, \mathit{N})_{\lambda}$

ullet $\Xi=$ W, the Weyl group of ${\mathfrak g}$

The Kazhdan-Lusztig problem

Describe the L_w 's in terms of the I_w 's, i.e.

The Kazhdan-Lusztig problem

Describe the L_w 's in terms of the I_w 's, i.e.

Find an expression

$$[L_w] = \sum_{v \in \Xi} c_{wv}[I_v]$$

in the Grothendieck group KC.

Table of Contents

- 1 The Kazhdan-Lusztig Conjecture
- 2 Solution of Kazhdan-Lusztig problem integral case
- 3 Non-integral case
- 4 Comparison with existing methods

lacksquare - flag variety of \mathfrak{g} , with a G-action

- \blacksquare \mathcal{B} flag variety of \mathfrak{g} , with a G-action
- lacksquare \mathcal{D}_{λ} sheaf of differential operators on \mathcal{B} , with twist λ

- lacksquare flag variety of \mathfrak{g} , with a G-action
- lacksquare \mathcal{D}_{λ} sheaf of differential operators on \mathcal{B} , with twist λ
- $\mathsf{Mod}_{coh}(\mathcal{D}_{\lambda})$ category of coherent \mathcal{D}_{λ} -modules (i.e. $\mathcal{O}_{\mathcal{B}}$ quasi-coherent and locally finitely generated over \mathcal{D}_{λ})

- lacksquare flag variety of \mathfrak{g} , with a G-action
- lacksquare \mathcal{D}_{λ} sheaf of differential operators on \mathcal{B} , with twist λ
- $\mathsf{Mod}_{coh}(\mathcal{D}_{\lambda})$ category of coherent \mathcal{D}_{λ} -modules (i.e. $\mathcal{O}_{\mathcal{B}}$ quasi-coherent and locally finitely generated over \mathcal{D}_{λ})

Theorem (Beilinson-Bernstein)

If λ is antidominant regular, then taking global sections is an equivalence of categories

$$\Gamma(X,-): \mathsf{Mod}_{coh}(\mathcal{D}_{\lambda}) \cong \mathsf{Mod}_{fg}(\mathfrak{g})_{\lambda}.$$

Its inverse $\mathcal{D}_{\lambda} \otimes_{\mathcal{U}(\mathfrak{g})_{\lambda}}$ – is called the **localization functor**.

- lacksquare flag variety of \mathfrak{g} , with a G-action
- lacksquare \mathcal{D}_{λ} sheaf of differential operators on \mathcal{B} , with twist λ
- $\mathsf{Mod}_{coh}(\mathcal{D}_{\lambda})$ category of coherent \mathcal{D}_{λ} -modules (i.e. $\mathcal{O}_{\mathcal{B}}$ quasi-coherent and locally finitely generated over \mathcal{D}_{λ})

Theorem (Beilinson-Bernstein)

If λ is antidominant regular, then taking global sections is an equivalence of categories

$$\Gamma(X, -) : \mathsf{Mod}_{coh}(\mathcal{D}_{\lambda}, N) \cong \mathsf{Mod}_{fg}(\mathfrak{g}, N)_{\lambda}.$$

Its inverse $\mathcal{D}_{\lambda} \otimes_{\mathcal{U}(\mathfrak{g})_{\lambda}}$ – is called the **localization functor**.

where the C(w)'s are N-orbits on \mathcal{B} , a.k.a. Schubert cells (parameterized also by W).

$$\operatorname{Supp} \mathcal{L}(w,\lambda) = \operatorname{Supp} \mathcal{I}(w,\lambda) = \overline{C(w)}.$$

the cokernel K is supported on the boundary of C(w).

the cokernel \mathcal{K} is supported on the boundary of C(w).

 \implies for the closed orbit $\mathit{C}(1)$, $\mathit{L}(1,\lambda) = \mathit{I}(1,\lambda)$.

Goal: find a way to obtain info about $\mathcal{L}(w,\lambda)$ from those $\mathcal{L}(v,\lambda)$'s with smaller support.

Goal: find a way to obtain info about $\mathcal{L}(w,\lambda)$ from those $\mathcal{L}(v,\lambda)$'s with smaller support.

Suppose we already know $\mathcal{L}(\mathbf{v}, \lambda)$.

Goal: find a way to obtain info about $\mathcal{L}(w,\lambda)$ from those $\mathcal{L}(v,\lambda)$'s with smaller support.

Suppose we already know $\mathcal{L}(v, \lambda)$.

Find a partial flag variety with 1-dimensional fibers (given by a simple root α :

$$\mathbb{P}^1 \longleftrightarrow \mathcal{B}
\downarrow \qquad \qquad \downarrow_{\rho_{\alpha}}
\{*\} \longleftrightarrow \mathcal{P}_{\alpha}$$

Goal: find a way to obtain info about $\mathcal{L}(w,\lambda)$ from those $\mathcal{L}(v,\lambda)$'s with smaller support.

Suppose we already know $\mathcal{L}(v, \lambda)$.

Find a partial flag variety with 1-dimensional fibers (given by a simple root α :

$$C(v) \xrightarrow{\qquad \qquad } \mathcal{B}$$

$$\downarrow^{p_{\alpha}}$$

$$p_{\alpha}(C(v)) \longleftrightarrow \mathcal{P}_{\alpha}$$

Want: $\dim p_{\alpha}(C(v)) = \dim C(v)$.

Goal: find a way to obtain info about $\mathcal{L}(w,\lambda)$ from those $\mathcal{L}(v,\lambda)$'s with smaller support.

Suppose we already know $\mathcal{L}(v, \lambda)$.

Find a partial flag variety with 1-dimensional fibers (given by a simple root α :

$$C(v) \xrightarrow{\qquad \qquad } \mathcal{B}$$

$$\downarrow^{p_{\alpha}}$$

$$p_{\alpha}(C(v)) \hookrightarrow \mathcal{P}_{\alpha}$$

Want: $\dim p_{\alpha}(C(v)) = \dim C(v)$. (Such α always exists if C(v) is not already the largest orbit in \mathcal{B}).

Goal: find a way to obtain info about $\mathcal{L}(w,\lambda)$ from those $\mathcal{L}(v,\lambda)$'s with smaller support.

Suppose we already know $\mathcal{L}(v, \lambda)$.

Find a partial flag variety with 1-dimensional fibers (given by a simple root α :

$$C(v) \cup C(vs_{\alpha})$$

$$\parallel$$

$$C(v) \longleftrightarrow p_{\alpha}^{-1}(p_{\alpha}(C(v))) \longleftrightarrow \mathcal{B}$$

$$\downarrow p_{\alpha}$$

$$p_{\alpha}(C(v)) \longleftrightarrow \mathcal{P}_{\alpha}$$

We say α is **transversal** to $C(\nu)$.

$$C(v) \cup C(vs_{\alpha})$$

$$\parallel$$

$$C(v) \longleftrightarrow p_{\alpha}^{-1}(p_{\alpha}(C(v))) \longleftrightarrow \mathcal{B}$$

$$\downarrow^{p_{\alpha}}$$

$$p_{\alpha}(C(v)) \longleftrightarrow \mathcal{P}_{\alpha}$$

Decomposition Theorem [Beilinson-Bernstein-Deligne-Gabber] $\implies p_{\alpha*}\mathcal{L}(v,\lambda)$ is a \oplus of irreducibles

Decomposition Theorem [Beilinson-Bernstein-Deligne-Gabber]

$$\implies p_{\alpha*}\mathcal{L}(\textit{v},\lambda)$$
 is a \oplus of irreducibles

$$p_{\alpha}^* p_{\alpha *} \mathcal{L}(v, \lambda)$$
 is a \oplus of irreducibles

Decomposition Theorem [Beilinson-Bernstein-Deligne-Gabber]

$$\implies p_{\alpha *} \mathcal{L}(\mathbf{v}, \lambda)$$
 is a \oplus of irreducibles $\longrightarrow p_{\alpha}^* p_{\alpha *} \mathcal{L}(\mathbf{v}, \lambda)$ is a \oplus of irreducibles

Note: Supp
$$p_{\alpha}^* p_{\alpha *} \mathcal{L}(v, \lambda) = \overline{C(v) \cup C(v s_{\alpha})}$$

Decomposition Theorem [Beilinson-Bernstein-Deligne-Gabber]

$$\implies p_{\alpha *} \mathcal{L}(v, \lambda)$$
 is a \oplus of irreducibles

$$ightharpoonup p_{lpha}^* p_{lpha *} \mathcal{L}(\mathit{v},\lambda)$$
 is a \oplus of irreducibles

Note: Supp
$$p_{\alpha}^* p_{\alpha *} \mathcal{L}(v, \lambda) = \overline{C(v) \cup C(vs_{\alpha})}$$

 $\implies \mathcal{L}(vs_{\alpha}, \lambda) \subseteq p_{\alpha}^* p_{\alpha *} \mathcal{L}(v, \lambda)$, with multiplicity 1.

Start with

$$\mathcal{L}(v,\lambda) = \sum_{u} c_{vu} \mathcal{I}(u,\lambda)$$

(in the *mixed/graded* Grothendieck group $K^m \operatorname{Mod}_{coh}(\mathcal{D}_{\lambda}, N)$)

Start with

$$\mathcal{L}(v,\lambda) = \sum_{u} c_{vu} \mathcal{I}(u,\lambda)$$

(in the mixed/graded Grothendieck group $K^m \operatorname{Mod}_{coh}(\mathcal{D}_{\lambda}, N)$)

Apply $U_{\alpha} := p_{\alpha}^* p_{\alpha*}$:

$$\mathcal{L}(\mathit{vs}_{lpha},\lambda) \oplus (\cdots) = \mathit{U}_{lpha}\mathcal{L}(\mathit{v},\lambda) = \sum_{\mathit{u}} \mathit{c}_{\mathit{vu}}\mathit{U}_{lpha}\mathcal{I}(\mathit{u},\lambda)$$

Start with

$$\mathcal{L}(v,\lambda) = \sum_{u} c_{vu} \mathcal{I}(u,\lambda)$$

(in the mixed/graded Grothendieck group $K^m \operatorname{Mod}_{coh}(\mathcal{D}_{\lambda}, N)$)

Apply $U_{\alpha} := p_{\alpha}^* p_{\alpha*}$:

$$\mathcal{L}(\textit{vs}_{\alpha},\lambda) \oplus (\cdots) = \textit{U}_{\alpha}\mathcal{L}(\textit{v},\lambda) = \sum_{\textit{u}} \textit{c}_{\textit{vu}}\textit{U}_{\alpha}\mathcal{I}(\textit{u},\lambda)$$

Solve for $\mathcal{L}(vs_{\alpha}, \lambda)$.

Remark: the U_{α} 's define an action $\mathcal{H}(W) \subset \mathcal{K}^m \operatorname{Mod}_{coh}(\mathcal{D}_{\lambda}, N)$.

Example: $\mathfrak{g} = \mathfrak{sl}(3,\mathbb{C})$

Table of Contents

- 1 The Kazhdan-Lusztig Conjecture
- 2 Solution of Kazhdan-Lusztig problem integral case
- 3 Non-integral case
- 4 Comparison with existing methods

```
What goes wrong when \lambda is non-integral? (\lambda non-integral \iff \not \exists finite dim rep of \mathfrak g with inf char \chi_\lambda)
```

What goes wrong when λ is non-integral? $(\lambda \text{ non-integral} \iff \not \exists \text{ finite dim rep of } \mathfrak{g} \text{ with inf char } \chi_{\lambda})$

$$C(v) \cup C(vs_{\alpha})$$

$$\parallel$$

$$C(v) \longleftrightarrow p_{\alpha}^{-1}(p_{\alpha}(C(v))) \longleftrightarrow \mathcal{B}$$

$$\downarrow^{p_{\alpha}}$$

$$p_{\alpha}(C(v)) \longleftrightarrow \mathcal{P}_{\alpha}$$

What goes wrong when λ is non-integral? (λ non-integral $\iff \not \exists$ finite dim rep of $\mathfrak g$ with inf char χ_λ)

To define $p_{\alpha*}$ and p_{α}^* we need a sheaf $\mathcal{D}_{\lambda,\mathcal{P}_{\alpha}}$ on \mathcal{P}_{α} .

```
What goes wrong when \lambda is non-integral? (\lambda \text{ non-integral} \iff \not \exists \text{ finite dim rep of } \mathfrak{g} \text{ with inf char } \chi_{\lambda})
```

To define $p_{\alpha*}$ and p_{α}^* we need a sheaf $\mathcal{D}_{\lambda,\mathcal{P}_{\alpha}}$ on \mathcal{P}_{α} . If α is non-integral to λ , $\mathcal{D}_{\lambda,\mathcal{P}_{\alpha}}$ does not exist.

Solution: if α is non-integral to λ , replace U_{α} by the **intertwining functor**

Solution: if α is non-integral to λ , replace U_{α} by the **intertwining functor**

$$\mathcal{B} \times \mathcal{B} \longleftarrow \mathcal{B} \times_{\mathcal{P}_{\alpha}} \mathcal{B} \longrightarrow \mathcal{B}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{B} \longrightarrow \mathcal{P}_{\alpha}$$

Solution: if α is non-integral to λ , replace U_{α} by the **intertwining functor**

$$\mathcal{B} \times \mathcal{B} \longleftarrow \mathcal{B} \times_{\mathcal{P}_{\alpha}} \mathcal{B} \longrightarrow \mathcal{B}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{B} \longrightarrow \mathcal{P}_{\alpha}$$

 $Z_{\alpha} := \mathcal{B} \times_{\mathcal{P}_{\alpha}} \mathcal{B} - \Delta \mathcal{B}$, a single *G*-orbit in $\mathcal{B} \times \mathcal{B}$.

Solution: if α is non-integral to λ , replace U_{α} by the **intertwining functor**

$$Z_{\alpha} \xrightarrow{p_1} \mathcal{B}$$

$$Z_{\alpha} \xrightarrow{p_2} \mathcal{B}$$

Solution: if α is non-integral to λ , replace U_{α} by the **intertwining functor**

$$Z_{\alpha} \xrightarrow{p_{1}} \mathcal{B}$$

$$\downarrow^{p_{2} \downarrow} \mathcal{B}$$

$$I_{\alpha} := p_{2*} \Big(\mathcal{L}_{\alpha} \underset{\mathcal{O}_{Z_{\alpha}}}{\otimes} p_{1}^{*}(-) \Big)$$

Solution: if α is non-integral to λ , replace U_{α} by the **intertwining functor**

$$Z_{\alpha} \xrightarrow{p_1} \mathcal{B}$$

$$Z_{\alpha} \xrightarrow{p_2} \mathcal{B}$$

$$I_{\alpha} := p_{2*} \Big(\mathcal{L}_{\alpha} \underset{\mathcal{O}_{Z_{\alpha}}}{\otimes} p_{1}^{*}(-) \Big)$$

 α transversal to $C(v) \implies \dim p_2(p_1^{-1}(C(v))) = \dim C(v) + 1$ (I_α does the same job as U_α in the algorithm).

Theorem (Beilinson-Bernstein)

If α is non-integral to λ , then I_{α} is an equivalence of categories

$$I_{\alpha}: \mathsf{Mod}_{coh}(\mathcal{D}_{\lambda}) \cong \mathsf{Mod}_{coh}(\mathcal{D}_{s_{\alpha}\lambda})$$

whose inverse is I_{α} . Moreover,

$$I_{\alpha}\mathcal{L}(\mathbf{v},\lambda) = \mathcal{L}(\mathbf{v}\mathbf{s}_{\alpha},\mathbf{s}_{\alpha}\lambda),$$

$$I_{\alpha}\mathcal{I}(\mathbf{v},\lambda) = \mathcal{I}(\mathbf{v}\mathbf{s}_{\alpha},\mathbf{s}_{\alpha}\lambda).$$

Theorem (Beilinson-Bernstein)

If α is non-integral to λ , then I_{α} is an equivalence of categories

$$I_{\alpha}: \mathsf{Mod}_{coh}(\mathcal{D}_{\lambda}) \cong \mathsf{Mod}_{coh}(\mathcal{D}_{s_{\alpha}\lambda})$$

whose inverse is I_{α} . Moreover,

$$I_{\alpha}\mathcal{L}(\mathbf{v},\lambda) = \mathcal{L}(\mathbf{v}\mathbf{s}_{\alpha},\mathbf{s}_{\alpha}\lambda),$$

$$I_{\alpha}\mathcal{I}(\mathbf{v},\lambda) = \mathcal{I}(\mathbf{v}\mathbf{s}_{\alpha},\mathbf{s}_{\alpha}\lambda).$$

Price: need to work with different λ 's.

Algorithm (λ non-integral)

Suppose we know $\mathcal{L}(\mathbf{v}, \mu)$ for any μ . Let α be transversal to $C(\mathbf{v})$. Want to find $\mathcal{L}(\mathbf{v}\mathbf{s}_{\alpha}, \lambda)$

Algorithm (λ non-integral)

Suppose we know $\mathcal{L}(\mathbf{v}, \mu)$ for any μ . Let α be transversal to $\mathcal{C}(\mathbf{v})$. Want to find $\mathcal{L}(\mathbf{v}\mathbf{s}_{\alpha}, \lambda)$ If α is integral to λ ,

$$U_{\alpha}\mathcal{L}(\mathbf{v},\lambda) \rightsquigarrow \mathcal{L}(\mathbf{v}\mathbf{s}_{\alpha},\lambda).$$

Algorithm (λ non-integral)

Suppose we know $\mathcal{L}(\mathbf{v}, \mu)$ for any μ . Let α be transversal to $\mathcal{C}(\mathbf{v})$. Want to find $\mathcal{L}(\mathbf{vs}_{\alpha}, \lambda)$ If α is integral to λ ,

$$U_{\alpha}\mathcal{L}(\mathbf{v},\lambda) \rightsquigarrow \mathcal{L}(\mathbf{v}\mathbf{s}_{\alpha},\lambda).$$

If α is non-integral to λ ,

$$I_{\alpha}\mathcal{L}(v, s_{\alpha}\lambda) = \mathcal{L}(vs_{\alpha}, \lambda).$$

This gives an algorithm for finding all irreducibles for all λ .

Remark: ... and an action $\mathcal{H}(W_{\lambda}) \subset \mathsf{Mod}_{coh}(\mathcal{D}_{\lambda}, N)$.

Example: $\mathfrak{g} = \mathfrak{sl}(3,\mathbb{C})$, $\lambda = \frac{1}{2}(\text{highest root})$

$$s_{eta}\lambda$$
 λ
 $s_{lpha}\lambda$
 $s_{lpha}\lambda$
 $s_{lpha}\lambda$
 $s_{lpha}\lambda$
 $s_{lpha}s_{eta}s_{lpha}s_{eta}s_{lpha}s_{eta}s_{lpha$

Table of Contents

- 1 The Kazhdan-Lusztig Conjecture
- 2 Solution of Kazhdan-Lusztig problem integral case
- 3 Non-integral case
- 4 Comparison with existing methods

Existing methods of category \mathcal{O}'

Beilinson-Bernstein-Lusztig (1984):

$$\mathsf{Mod}(\mathfrak{g}, \mathit{N})_{\lambda} \xrightarrow{\mathit{deform}} \mathsf{Mod}(\mathfrak{g}, \mathit{N})_{\mathit{rat}} \leadsto \mathsf{Mod}(\mathcal{D}_{L^*}, \mathit{N})$$

$$\longrightarrow \mathsf{Perv}_{\mathit{N}}(\mathit{L}^*) \leadsto \mathsf{positive\ char},$$

where $L \to \mathcal{B}$ is the total space of a line bundle determined by the rational twist, and $L^* = L$ — zero sections.

Existing methods of category \mathcal{O}'

Beilinson-Bernstein-Lusztig (1984):

$$\mathsf{Mod}(\mathfrak{g}, \mathit{N})_{\lambda} \xrightarrow{\mathit{deform}} \mathsf{Mod}(\mathfrak{g}, \mathit{N})_{\mathit{rat}} \leadsto \mathsf{Mod}(\mathcal{D}_{L^*}, \mathit{N})$$

$$\longrightarrow \mathsf{Perv}_{\mathit{N}}(\mathit{L}^*) \leadsto \mathsf{positive char},$$

where $L \to \mathcal{B}$ is the total space of a line bundle determined by the rational twist, and $L^* = L -$ zero sections.

Soergel (1990):

$$\mathsf{Mod}(\mathfrak{g}, N) \longrightarrow \mathsf{Mod}(\mathcal{D}_{\mathcal{B}}, N) \longrightarrow \mathsf{Perv}_{\mathsf{N}}(\mathcal{B}) \longrightarrow \mathsf{Soergel}$$
 bimodules

Existing methods of category \mathcal{O}'

Beilinson-Bernstein-Lusztig (1984):

$$\mathsf{Mod}(\mathfrak{g}, N)_{\lambda} \xrightarrow{\mathit{deform}} \mathsf{Mod}(\mathfrak{g}, N)_{\mathit{rat}} \leadsto \mathsf{Mod}(\mathcal{D}_{L^*}, N)$$

$$\longrightarrow \mathsf{Perv}_{N}(L^*) \leadsto \mathsf{positive\ char},$$

where $L \to \mathcal{B}$ is the total space of a line bundle determined by the rational twist, and $L^* = L -$ zero sections.

Soergel (1990):

$$\mathsf{Mod}(\mathfrak{g}, \mathit{N}) \leadsto \mathsf{Mod}(\mathcal{D}_{\mathcal{B}}, \mathit{N}) \leadsto \mathsf{Perv}_{\mathsf{N}}(\mathcal{B}) \leadsto \mathsf{Soergel}$$
 bimodules

Both methods require going to perverse sheaves. (with Mochizuki's Decomposition Theorem for holonomic D-modules, BBL's method doesn't need perverse sheaf anymore...)

Advantage of our method

Compared with Beilinson-Bernstein-Lusztig's approach, we don't need to distinguish rational twists from arbitrary twists.

Advantage of our method

Compared with Beilinson-Bernstein-Lusztig's approach, we don't need to distinguish rational twists from arbitrary twists.

Compared with Soergel's approach, we don't need to go into perverse sheaves.

Advantage of our method

Compared with Beilinson-Bernstein-Lusztig's approach, we don't need to distinguish rational twists from arbitrary twists.

Compared with Soergel's approach, we don't need to go into perverse sheaves.

Example: Whittaker modules $\mathsf{Mod}_{coh}(\mathcal{D}_\lambda, \mathit{N}, \mathit{f})$ do not correspond to perverse sheaves (because these D-modules are NOT regular holonomic).

Comparison with existing methods

Thank you!