A(nother) geometric comparison between representations of real and p-adic groups

Qixian Zhao joint w/ Taiwang Deng, Chang Huang, and Bin Xu

Yau Mathematical Sciences Center, Tsinghua University

Sep 21, 2024 Postdoc Workshop IV

Table of Contents

2 Geometric comparison

3 Motivation/applications

4 Existing comparisons

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Table of Contents

2 Geometric comparison

3 Motivation/applications

4 Existing comparisons

・ロト・日本・日本・日本・日本・日本

Setup $/\mathbb{R}$

- G connected reductive algebraic group $/\mathbb{C}$
- $G_{\mathbb{R}}$ real group with complexification = G

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Setup $/\mathbb{R}$

- G connected reductive algebraic group /C
 G_ℝ real group with complexification = G
 Infinitesimal character:
 - g Lie algebra of G
 - $\blacksquare \operatorname{\mathsf{Rep}}({\mathit{G}}_{\mathbb{R}}) \to \operatorname{\mathsf{Mod}}(\mathfrak{g}) \cong \operatorname{\mathsf{Mod}}({\mathcal{U}}(\mathfrak{g})) \twoheadrightarrow \operatorname{\mathsf{Mod}}({\mathit{Z}}({\mathcal{U}}(\mathfrak{g})))$

• $\Lambda_{\mathbb{R}} : Z(\mathcal{U}(\mathfrak{g})) \to \mathbb{C}$ - infinitesimal character

Setup $/\mathbb{R}$

- G connected reductive algebraic group /C
 G_ℝ real group with complexification = G
 Infinitesimal character:
 - g Lie algebra of G
 - $\blacksquare \operatorname{\mathsf{Rep}}({\mathit{G}}_{\mathbb{R}}) \to \operatorname{\mathsf{Mod}}(\mathfrak{g}) \cong \operatorname{\mathsf{Mod}}({\mathcal{U}}(\mathfrak{g})) \twoheadrightarrow \operatorname{\mathsf{Mod}}({\mathit{Z}}({\mathcal{U}}(\mathfrak{g})))$

• $\Lambda_{\mathbb{R}} : Z(\mathcal{U}(\mathfrak{g})) \rightarrow \mathbb{C}$ - infinitesimal character

 $\Pi({\it G}_{\mathbb R},\Lambda_{\mathbb R})$ - irreducible representations of ${\it G}_{\mathbb R}$ with infinitesimal character $\Lambda_{\mathbb R}$ /~

Setup $/\mathbb{R}$

Want: classify $\Pi(G_{\mathbb{R}}, \Lambda_{\mathbb{R}})$.

Setup $/\mathbb{R}$

Want: classify $\Pi(G_{\mathbb{R}}, \Lambda_{\mathbb{R}})$. Local Langlands Correspondence (Langlands, ...):

 $\Pi({\it G}_{\mathbb{R}},\Lambda_{\mathbb{R}})\approx\{({\rm enhanced}) \text{ Langlands parameters}\}/\sim.$

Setup $/\mathbb{R}$

Want: classify $\Pi(G_{\mathbb{R}}, \Lambda_{\mathbb{R}})$. Local Langlands Correspondence (Langlands, ...):

 $\Pi(G_{\mathbb{R}}, \Lambda_{\mathbb{R}}) \approx \{ (enhanced) \text{ Langlands parameters} \} / \sim .$

Adams-Barbasch-Vogan:

 $\{(\mathsf{enhanced}) \; \mathsf{Langlands} \; \mathsf{parameters}\}/\sim pprox \; \mathsf{Irr} \; \mathsf{Perv}(\check{\mathcal{B}},\check{K})$

(under some conditions...)

Langlands parameter space $/\mathbb{R}$

- Ğ Langlands dual group
- *B*⊂ Ğ Borel subgroup (upper-triangular matrices)
 Š = Ğ/B flag variety of Ğ
 (smooth projective variety)

Langlands parameter space $/\mathbb{R}$

- Ğ Langlands dual group
- *B* ⊂ *G* Borel subgroup (upper-triangular matrices)
 S = *G*/*B* - flag variety of *G* (smooth projective variety)

- $\check{G}_{\mathbb{R}}$ real form of \check{G} determined by $G_{\mathbb{R}}$
- $\check{K}_{\mathbb{R}} \subset \check{G}_{\mathbb{R}}$ maximal compact subgroup
- $\check{K} \subset \check{G}$ complexification $\longrightarrow \check{K} \subset \check{G} \subset \check{B}$

Langlands parameter space $/\mathbb{R}$

- Ğ Langlands dual group
- *B* ⊂ Ğ Borel subgroup (upper-triangular matrices)
 S = Ğ/B - flag variety of Ğ
 (smooth projective variety)
- $\check{G}_{\mathbb{R}}$ real form of \check{G} determined by $G_{\mathbb{R}}$
- $\check{K}_{\mathbb{R}} \subset \check{G}_{\mathbb{R}}$ maximal compact subgroup
- $\check{K} \subset \check{G}$ complexification $\longrightarrow \check{K} \subset \check{G} \subset \check{B}$

 $\operatorname{Perv}(\check{\mathcal{B}},\check{K})$ - category of \check{K} -equivariant perverse sheaves on $\check{\mathcal{B}}$ $\xrightarrow{}$ Irr $\operatorname{Perv}(\check{\mathcal{B}},\check{K})$ - irreducible objects

SL₂ example

$$G_{\mathbb{R}} = \mathbf{PGL}_2(\mathbb{R}), \ G = \mathbf{PGL}_2(\mathbb{C}),$$

 $\Lambda_{\mathbb{R}} = \text{inf char of trivial rep } \mathbb{C}$

(ロ)、(型)、(E)、(E)、 E) の(()

SL_2 example

$$G_{\mathbb{R}} = \mathbf{PGL}_{2}(\mathbb{R}), \ G = \mathbf{PGL}_{2}(\mathbb{C}),$$

$$\Lambda_{\mathbb{R}} = \text{inf char of trivial rep } \mathbb{C}$$

$$\cdots \rightarrow \Pi(\mathbf{PGL}_{2}(\mathbb{R}), trv) = \{$$

$$\mathbb{C}^{+} \ (1\text{-dim'l})$$

$$\mathbb{C}^{-} \ (1\text{-dim'l})$$

$$DS \ (\infty\text{-dim'l})$$

$$\}$$

(ロ)、(型)、(E)、(E)、 E) の(()

SL_2 example

(ロ)、(型)、(E)、(E)、 E) の(()

SL₂ example

$\Pi(\textbf{PGL}_2(\mathbb{R}),\textit{trv})$	$\operatorname{Irr}\operatorname{Perv}(\mathbb{P}^1,\mathbb{C}^{ imes})$
\mathbb{C}^+	skyscraper at 0
\mathbb{C}^{-}	skyscraper at ∞
DS	$\underline{\mathbb{C}}_{\mathbb{P}^1}$
(C of PSU (2))	\mathcal{I}

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Setup
$$/\mathbb{Q}_p$$

• G'_p - connected split reductive group $/\mathbb{Q}_p$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Setup
$$/\mathbb{Q}_p$$

G'_p - connected split reductive group /Q_p
 Λ_p : W_{Q_p} → Ğ'_p - "infinitesimal character" (due to Vogan)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Setup
$$/\mathbb{Q}_p$$

• G'_p - connected split reductive group $/\mathbb{Q}_p$ • $\Lambda_p : W_{\mathbb{Q}_p} \to \check{G}'_p$ - "infinitesimal character" (due to Vogan) $\Pi(G'_p, \Lambda_p)$ - irreducible representations of G'_p with infinitesimal character Λ_p / \sim

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Setup $/\mathbb{Q}_p$

Want: classify $\Pi(G'_p, \Lambda_p)$.

Setup $/\mathbb{Q}_p$

Want: classify $\Pi(G'_p, \Lambda_p)$. Local Langlands Correspondence/conjecture:

 $\Pi(G'_p, \Lambda_p) \approx \{(enhanced) \text{ Langlands parameters}\}/\sim$

Setup $/\mathbb{Q}_p$

Want: classify $\Pi(G'_p, \Lambda_p)$. Local Langlands Correspondence/conjecture:

 $\Pi(\textit{G}'_{p}, \Lambda_{p}) \approx \{(\mathsf{enhanced}) \text{ Langlands parameters}\} / \sim$

Vogan:

 $\{(\mathsf{enhanced}) \text{ Langlands parameters}\}/\sim \cong \mathsf{Irr} \, \mathsf{Perv}(X_{\Lambda_p}, Z_{\check{G}'_p}(\Lambda_p))$

Langlands parameter space $/\mathbb{Q}_p$

$$X_{\Lambda_p} = \left\{ \xi \in \check{\mathfrak{g}}'_p \mid \forall w \in W_{\mathbb{Q}_p}, \operatorname{Ad}(\Lambda_p(w))\xi = |w|\xi \right\}$$

(conical affine variety in $\check{\mathfrak{g}}'_p$)

・ロト・西ト・山田・山田・山口・

Table of Contents

3 Motivation/applications

Goal

Find pairs of groups $({\it G}_{\mathbb R},{\it G}'_p)$ and pairs of infinitesimal characters $(\Lambda_{\mathbb R},\Lambda_p)$ so that

 $\Pi(G'_p,\Lambda_p)\sim \Pi(G_{\mathbb{R}},\Lambda_{\mathbb{R}})$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

ldea

Instead of trying to directly build a map

 $\Pi(\mathit{G'_p},\Lambda_p) \sim \Pi(\mathit{G_{\mathbb{R}}},\Lambda_{\mathbb{R}})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Idea

Instead of trying to directly build a map

$$\Pi(G'_{p},\Lambda_{p})\sim \Pi(G_{\mathbb{R}},\Lambda_{\mathbb{R}})$$

Construct functors between

$$\operatorname{Perv}(X_{\Lambda_p}, Z_{\check{G}'_p}(\Lambda_p)) \text{ and } \operatorname{Perv}(\check{\mathcal{B}}, \check{K})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Idea

Instead of trying to directly build a map

$$\Pi(\mathit{G}'_{p},\Lambda_{p}) \sim \Pi(\mathit{G}_{\mathbb{R}},\Lambda_{\mathbb{R}})$$

Construct functors between

$$\operatorname{Perv}(X_{\Lambda_p}, Z_{\check{G}'_p}(\Lambda_p)) \text{ and } \operatorname{Perv}(\check{\mathcal{B}}, \check{K})$$

 \leftarrow construct a "map" of varieties

$$X_{\Lambda_p} \leftarrow - \check{\mathcal{B}}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Idea

Instead of trying to directly build a map

$$\Pi(G'_p, \Lambda_p) \sim \Pi(G_{\mathbb{R}}, \Lambda_{\mathbb{R}})$$

Construct functors between

$$\operatorname{Perv}(X_{\Lambda_p}, Z_{\check{G}'_p}(\Lambda_p)) \text{ and } \operatorname{Perv}(\check{\mathcal{B}}, \check{K})$$

 \leftarrow construct a "map" of varieties

$$X_{\Lambda_p} \leftarrow - \check{\mathcal{B}}$$

In practice:

$$[X_{\Lambda_p}/Z_{\check{G}'_p}(\Lambda_p)] \leftarrow - [\check{\mathcal{B}}/\check{K}]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Desiderata

$$[X_{\Lambda_p}/Z_{\check{G}'_p}(\Lambda_p)] \leftarrow - [\check{\mathcal{B}}/\check{K}]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

should satisfy some properties:

Desiderata

$$[X_{\Lambda_p}/Z_{\check{G}'_p}(\Lambda_p)] \leftarrow - [\check{\mathcal{B}}/\check{K}]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

should satisfy some properties:

• sends a large part of $[\check{\mathcal{B}}/\check{K}]$ into an open subspace of $[X_{\Lambda_p}/Z_{\check{G}'_p}(\Lambda_p)]$

Desiderata

$$[X_{\Lambda_p}/Z_{\check{G}'_p}(\Lambda_p)] \leftarrow - [\check{\mathcal{B}}/\check{K}]$$

should satisfy some properties:

- sends a large part of $[\check{\mathcal{B}}/\check{K}]$ into an open subspace of $[X_{\Lambda_p}/Z_{\check{G}'_p}(\Lambda_p)]$
- intertwines translation functors and Jacquet restrictions/Zelevinsky derivatives

$$\begin{array}{lll} \Pi(G'_p, \Lambda_p) & \sim & \Pi(G_{\mathbb{R}}, \Lambda_{\mathbb{R}}) \\ & & & \downarrow translation \\ \Pi(L'_p, \Lambda'_p) & \sim & \Pi(G_{\mathbb{R}}, \Lambda'_{\mathbb{R}}) \end{array}$$

Desiderata

$$[X_{\Lambda_p}/Z_{\check{G}'_p}(\Lambda_p)] \leftarrow - [\check{\mathcal{B}}/\check{K}]$$

should satisfy some properties:

- sends a large part of $[\check{\mathcal{B}}/\check{K}]$ into an open subspace of $[X_{\Lambda_p}/Z_{\check{G}'_p}(\Lambda_p)]$
- intertwines translation functors and Jacquet restrictions/Zelevinsky derivatives

$$egin{array}{rcl} X_{G'_{p},\Lambda_{p}} & \sim & \check{\mathcal{B}} \ & & & & & & & \\ Lusztig ind & & & & & & & & \\ & X_{L'_{p},\Lambda'_{p}} & \sim & \check{\mathcal{B}} \end{array}$$

Which pairs of groups?

The following pairs should work:

$$\begin{array}{c|c} G'_p & G_{\mathbb{R}} \\ \hline GL_m(\mathbb{Q}_p) & GL_n(\mathbb{C}) \\ Sp(2m, \mathbb{Q}_p) & \\ SO(2m+1, \mathbb{Q}_p) & \\ \end{array}$$

(each $\Lambda_{\mathbb{R}} \longrightarrow$ many possible (G'_p, Λ_p) 's) The following pairs are expected to work:

$$\begin{array}{c|c} \mathbf{Sp}(2m,\mathbb{Q}_p) \\ \mathbf{SO}(2m+1,\mathbb{Q}_p) \\ \cdots \end{array} \begin{array}{c} \mathbf{Sp}(2n,\mathbb{R}) \\ \mathbf{SO}(2n+1,\mathbb{R}) \\ \cdots \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Table of Contents

2 Geometric comparison

3 Motivation/applications

4 Existing comparisons

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Automorphic representations

• G - connected reductive group $/\mathbb{Q}$

- $\mathbb{A}_{\mathbb{Q}} \subset \mathbb{R} \times \prod_{p} \mathbb{Q}_{p}$
- $G(\mathbb{A}_{\mathbb{Q}}) \subset L^2(G(\mathbb{Q})A \setminus G(\mathbb{A}_{\mathbb{Q}}))$

Automorphic representations

• G - connected reductive group $/\mathbb{Q}$

•
$$\mathbb{A}_{\mathbb{Q}} \subset \mathbb{R} \times \prod_{p} \mathbb{Q}_{p}$$

•
$$G(\mathbb{A}_{\mathbb{Q}}) \subset L^2(G(\mathbb{Q})A \setminus G(\mathbb{A}_{\mathbb{Q}}))$$

Automorphic representations: those appearing inside $L^2(G(\mathbb{Q})A \setminus G(\mathbb{A}_{\mathbb{Q}})).$

Arthur's conjecture: classify automorphic representations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Arthur packets

Arthur:

• {automorphic reps} =
$$\bigcup_{\psi} \prod_{\psi}^{\mathcal{A}} (G(\mathbb{A}))$$

Arthur packets

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Arthur packets

Arthur:

• {automorphic reps} = $\bigcup_{\psi} \underbrace{\Pi_{\psi}^{\mathcal{A}}(\mathcal{G}(\mathbb{A}))}$

Arthur packets

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\blacksquare \underbrace{\pi}_{G(\mathbb{A}_{\mathbb{Q}})\text{-rep}} = \underbrace{\pi_{\mathbb{R}}}_{G(\mathbb{R})\text{-rep}} \bigotimes_{f(\mathbb{Q}_{p})\text{-rep}} \underbrace{\pi_{p}}_{G(\mathbb{Q}_{p})\text{-rep}}$$

Arthur packets

Arthur:

■ {automorphic reps} = $\bigcup_{\psi} \underbrace{\prod_{\psi}^{A}(G(\mathbb{A}))}_{\text{Arthur packets}}$ ■ $\underbrace{\pi}_{G(\mathbb{A}_{\mathbb{Q}})\text{-rep}} = \underbrace{\pi}_{G(\mathbb{R})\text{-rep}} \bigotimes_{G(\mathbb{Q}_{p})\text{-rep}}^{\prime} \underbrace{\pi}_{G(\mathbb{Q}_{p})\text{-rep}}$ $\xrightarrow{\longrightarrow} \prod_{\psi}^{A}(G(\mathbb{A})) \approx \underbrace{\prod_{\psi}^{A}(G(\mathbb{R}))}_{\text{local Arthur packets}} \text{ and } \prod_{\psi_{p}}^{A}(G(\mathbb{Q}_{p}))$

・ロト・日本・日本・日本・日本・日本

Calculation of Arthur packets

Status: for G split classical,

 $/\mathbb{Q}_p$ local A-packets are computable (\exists algorithm)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Calculation of Arthur packets

Status: for G split classical,

 $/\mathbb{Q}_p$ local A-packets are computable (\exists algorithm)

/ℝ local A-packets are known and easily computable if the infinitesimal character is regular ("Adams-Johnson packets")

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Calculation of Arthur packets

Status: for G split classical,

 $/\mathbb{Q}_p$ local A-packets are computable (\exists algorithm)

/ℝ local A-packets are known and easily computable if the infinitesimal character is regular ("Adams-Johnson packets")
 Mœglin-Renard: other A-packets can be obtained from AJ-packets by translating the infinitesimal character (∃ not so nice algorithm)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Calculation of Arthur packets

Status: for G split classical,

 $/\mathbb{Q}_p$ local A-packets are computable (\exists algorithm)

/ℝ local A-packets are known and easily computable if the infinitesimal character is regular ("Adams-Johnson packets")
 Mœglin-Renard: other A-packets can be obtained from AJ-packets by translating the infinitesimal character (∃ not so nice algorithm)

-----> use our comparison and do calculation on the p-adic side instead (this is the reason for the desiderata...)

Multiplicity one of A-packets

Arthur: can determine the multiplicity of π in $L^2(G(\mathbb{Q})A \setminus G(\mathbb{A}_{\mathbb{Q}}))$ provided the local A-packets have "multiplicity one".

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Multiplicity one of A-packets

Arthur: can determine the multiplicity of π in $L^2(G(\mathbb{Q})A \setminus G(\mathbb{A}_{\mathbb{Q}}))$ provided the local A-packets have "*multiplicity one*".

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

•
$$\psi \dashrightarrow A(\psi)$$
, finite group (usually 2-group)

$$\pi \in \Pi_{\psi}^{\mathcal{A}}(G) \dashrightarrow \rho_{\pi} \in \operatorname{Rep}(\mathcal{A}(\psi))$$

Multiplicity one of A-packets

Arthur: can determine the multiplicity of π in $L^2(G(\mathbb{Q})A \setminus G(\mathbb{A}_{\mathbb{Q}}))$ provided the local A-packets have "*multiplicity one*".

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

•
$$\psi \dashrightarrow A(\psi)$$
, finite group (usually 2-group)

$$\blacksquare \ \pi \in \Pi_{\psi}^{\mathcal{A}}(\mathcal{G}) \dashrightarrow \rho_{\pi} \in \operatorname{Rep}(\mathcal{A}(\psi))$$

"Multiplicity one" means dim $\rho_{\pi} = 1$. (solved in the p-adic case for quasi-split classical groups(?))

Local Arthur packets via geometry

Adams-Barbasch-Vogan ('92) + Adams-Arancibia-Mezo ('22):

• $\Pi_{\psi_{\mathbb{R}}}^{A}(G(\mathbb{R}))$, $A(\psi_{\mathbb{R}})$, and $\rho_{\pi_{\mathbb{R}}}$ can be defined using microlocal geometry of $[\check{\mathcal{B}}/\check{K}]$.

Local Arthur packets via geometry

Adams-Barbasch-Vogan ('92) + Adams-Arancibia-Mezo ('22):

• $\Pi_{\psi_{\mathbb{R}}}^{A}(G(\mathbb{R}))$, $A(\psi_{\mathbb{R}})$, and $\rho_{\pi_{\mathbb{R}}}$ can be defined using microlocal geometry of $[\check{\mathcal{B}}/\check{K}]$.

Vogan's conjecture ('93) +

Cunningham-Fiori-Moussaoui-Mracek-Xu ('21) + ... :

Π^A_{ψ_p}(G(ℚ_p)), A(ψ_p), and ρ_{π_p} can (conjecturally) be defined using microlocal geometry of [X_{Λ_p}/Z_Ğ(Λ_p)].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Local Arthur packets via geometry

Adams-Barbasch-Vogan ('92) + Adams-Arancibia-Mezo ('22):

- $\Pi_{\psi_{\mathbb{R}}}^{A}(G(\mathbb{R}))$, $A(\psi_{\mathbb{R}})$, and $\rho_{\pi_{\mathbb{R}}}$ can be defined using microlocal geometry of $[\check{\mathcal{B}}/\check{K}]$.
- Vogan's conjecture ('93) +

Cunningham-Fiori-Moussaoui-Mracek-Xu ('21) + ... :

Π^A_{ψρ}(G(ℚ_p)), A(ψ_p), and ρ_{πρ} can (conjecturally) be defined using microlocal geometry of [X_{Λρ}/Z_Ğ(Λ_p)].

Our comparison: also relates microlocal geometry info of both sides ···· translate the problem to p-adic side

Table of Contents

1 Langlands parameter spaces

2 Geometric comparison

3 Motivation/applications

4 Existing comparisons

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Functor:
$$\operatorname{Rep}(\operatorname{\mathbf{GL}}_n(\mathbb{C})) \xrightarrow{\Gamma_{n,m}} \operatorname{Mod}(\underbrace{\mathbb{H}}_m) \longrightarrow \operatorname{Rep}(\operatorname{\mathbf{GL}}_m(\mathbb{Q}_p)).$$

 $\operatorname{gr-Hecke}_{\operatorname{algebra}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Functor:
$$\operatorname{Rep}(\operatorname{\mathbf{GL}}_n(\mathbb{C})) \xrightarrow{\Gamma_{n,m}} \operatorname{Mod}(\underbrace{\mathbb{H}}_m) \longrightarrow \operatorname{Rep}(\operatorname{\mathbf{GL}}_m(\mathbb{Q}_p)).$$

 $\operatorname{gr-Hecke}_{\operatorname{algebra}}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Construction is algebraic, and no Langlands dual
- $\blacksquare \approx$ our construction

Barchini-Trapa

$$G' = G$$
 split classical group
 $[X_{\Lambda_p}/Z_{\check{G}_p}(\Lambda_p)] \longrightarrow [\check{\mathcal{B}}/\check{K}]$ locally closed immersion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Barchini-Trapa

- G' = G split classical group $[X_{\Lambda_p}/Z_{\check{G}_p}(\Lambda_p)] \longleftrightarrow [\check{\mathcal{B}}/\check{K}]$ locally closed immersion
 - Good for relating Arthur packets for the same group

image is small...

Thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ